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Solving LAPLACE Equation numerically 

We will now discuss the numerical solution of Laplace equation for electrical 

potentials in a certain region of space, knowing its behaviour or value at the 

border of said region. 

We already know that Laplace equation is used to represent various physical 

problems dealing with the potential of an unknown variable. 

Generalized form of Laplace equation can be written as -   

∂2u

∂𝑥2
+  

∂2u

∂𝑦2
= 0, where u is the potential of an unknown variable. 

So, Laplace equation for electrical potential can be written as –  

𝛛𝟐𝐕

𝛛𝒙𝟐 +  
𝛛𝟐𝐕

𝛛𝒚𝟐 = 𝟎, where V is the electrical potential. 

Before discussing the solution let us first specify the boundary conditions. 

Our region of interest is bounded by 0 < x, y <1 

Let us specify the values of electricals potential at the boundary. 

At x=0, V = 0 (for any value of y) 

At x=1, V = 0 (for any value of y) 

At y=0, V = f(x) (for any value of x, f(x) is some function of x) 

At y=0, V = 0 (for any value of x) 
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Let us now proceed with numerical solution that is based on finite difference 

method. 

Again, let us start by writing the equation 
𝛛𝟐𝐕

𝛛𝒙𝟐 +  
𝛛𝟐𝐕

𝛛𝒚𝟐 = 𝟎 

We can write,   
𝜕𝑉
𝜕𝑥

 = 
𝑉(𝑥+∆x)−𝑉(𝑥)

∆x
 

Therefore, 
 𝜕2𝑉

𝜕𝑥2 =  
𝜕𝑉

𝜕𝑥
(𝑎𝑡 𝑥) −  

𝜕𝑉

𝜕𝑥
 (𝑎𝑡 𝑥−∆x) 

∆x
  

 

     = 
𝑉(𝑥+∆x)−𝑉(𝑥)

∆x
  −  

𝑉(𝑥)−𝑉(𝑥−∆x)

∆x
 

∆x
 = 

𝑉(𝑥+∆x) − 2𝑉(𝑥) + 𝑉(𝑥−∆x)

(∆x)2  

Similarly, 
 𝜕2𝑉

𝜕𝑦2 =  

𝜕𝑉

𝜕𝑦
(𝑎𝑡 𝑦) −  

𝜕𝑉

𝜕𝑦
 (𝑎𝑡 𝑦−∆y) 

∆y
  

 

     = 

𝑉(𝑦+∆y)−𝑉(𝑦)

∆y
  −  

𝑉(𝑦)−𝑉(𝑦−∆y)

∆y
 

∆y
 = 

𝑉(𝑦+∆y) − 2𝑉(𝑦) + 𝑉(𝑦−∆y)

(∆y)2  

∴ 
𝑽(𝒙+∆𝐱) − 𝟐𝑽(𝒙) + 𝑽(𝒙−∆𝐱)

(∆𝐱)𝟐 +  
𝑽(𝒚+∆𝐲) − 𝟐𝑽(𝒚) + 𝑽(𝒚−∆𝐲)

(∆𝐲)𝟐 = 𝟎    (1) 

We have discretized the equation. 

This equation is two dimensional. So, we will treat the region of 

interest as a mesh of discrete points. 
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Let us divide the interval 0≤x≤1 into (N+1) equally spaced points. 

∴ dx = 
1

𝑁
 = ∆𝑥  

Now x=0 is denoted by x0, x=0+∆𝑥 is denoted by x1, …………... x=1 is 
denoted by xN+1 

Let us also divide the interval 0≤y≤1 into (M+1) equally spaced 

points. 

∴ dy = 
1

𝑀
 = ∆𝑦 

Now y=0 is denoted by y0, y=0+∆𝑦 is denoted by x1, …………... y=1 is 
denoted by yM+1 

Now consider a point (x,y) in the region, which is represented by the discrete 

point (xN,yM) or (N,M) in the mesh. 

So, the points (x+∆𝑥,y) and (x−∆𝑥,y) are represented by the discrete points 

(N+1, M) and (N-1, M) respectively in the mesh. 

Now it is easy to understand that the points (x,y+∆𝑦) and (x,y−∆𝑦) are 

represented by the discrete points (N, M+1) and (N, M-1) respectively in the 

mesh. 

Therefore, the equation (1) can be rewritten as – 

𝑽(𝑵+𝟏,𝑴) − 𝟐𝑽(𝑵,𝑴) + 𝑽(𝑵−𝟏,𝑴)

(∆𝐱)𝟐 +  
𝑽(𝑵,𝑴+𝟏) − 𝟐𝑽(𝑵,𝑴) + 𝑽(𝑵,𝑴−𝟏)

(∆𝐲)𝟐 = 𝟎   (2) 

Let’s choose, ∆𝑥 =  ∆𝑦 

Now we can write, 

𝑽(𝑵 + 𝟏, 𝑴) −  𝟐𝑽(𝑵, 𝑴)  +  𝑽(𝑵 − 𝟏, 𝑴) +  𝑽(𝑵, 𝑴 + 𝟏)  −  𝟐𝑽(𝑵, 𝑴)  +  𝑽(𝑵, 𝑴 − 𝟏) = 0 

∴𝑽(𝑵 + 𝟏, 𝑴) +  𝑽(𝑵 − 𝟏, 𝑴) +  𝑽(𝑵, 𝑴 + 𝟏)  +  𝑽(𝑵, 𝑴 − 𝟏)  −  𝟒𝑽(𝑵, 𝑴)  = 0 

∴ 𝟒𝑽(𝑵, 𝑴) =  𝑽(𝑵 + 𝟏, 𝑴)  +  𝑽(𝑵 − 𝟏, 𝑴) +  𝑽(𝑵, 𝑴 + 𝟏)  +  𝑽(𝑵, 𝑴 − 𝟏) 

∴ 𝑽(𝑵, 𝑴) =  
𝑽(𝑵+𝟏,𝑴) + 𝑽(𝑵−𝟏,𝑴)+ 𝑽(𝑵,𝑴+𝟏) + 𝑽(𝑵,𝑴−𝟏)

𝟒
                     (3) 

 

 

 



 

 

 

 

 

This is known as finite difference stencil that relates V(N,M) to its 4 nearest 

neighbours.  

So, the procedure should be as follows ---  

We have to determine the electrical potential V(N,M) at any point (N,M) using 

the electrical potential of its 4 nearest neighbours. 

Using this method, we have to determine electrical potential V at all points in 

the mesh. We should continue doing this until the electrical potential V at all 

points attains a steady value. 

 
Let us discuss the procedure again step by step. 
Firstly, we have to assign a guess value Vguess to electrical potential at all the 
points in the mesh. 
Then using this guess value, we have to determine electrical potential V at all 
points in the mesh. 
In the next iteration, we have to determine electrical potential V at all points in 
the mesh using the values at previous stage. 
We have to do this again and again, until the electrical potential V at all points 
attains a steady value. 
Now the question remains - how do we know that V has got that steady value? 
Its super easy. We have to set a desired accuracy ∆𝑉. 
For a particular mesh point (Let’s say N,M) when the difference between value 
of V at a stage and value of V at previous stage will become less than ∆𝑉        
[Vk+1 ~ Vk ≤∆𝑉, 𝑘 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑛𝑜 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛], then we can say that V at that mesh point 
has achieved the steady value. 
When this will be true for all the mesh points then we can say that V has got 
the steady value at all the points. 
Once V at all points reaches the steady value then we can stop our calculation. 
 
 
 

𝑽(𝑵, 𝑴) 
𝑽(𝑵 + 𝟏, 𝑴) 

𝑽(𝑵 − 𝟏, 𝑴) 

𝑽(𝑵, 𝑴 + 𝟏) 

𝑽(𝑵, 𝑴 − 𝟏) 



Let us denote the value of electrical potential V at the mesh point (N,M) during  

K-th iteration by 𝑉𝑁,𝑀
𝐾 . 

Value of electrical potential V at the mesh point (N,M) during (K+1)th iteration 
can be calculated using equation (3). 
 

VN,M
K+1 =  

VN+1,M
K  +  VN−1,M

K +  VN,M+1
K  + VN,M−1

K

4
 

 
Let us start writing our program. 
Let us divide both the x-range 0 < x<1 and y-range 0 <y <1 into 14 equally 
spaced points. 
So, N=13=M (as N+1=14) 

∴∆𝑥 =  ∆𝑦 =  
1

13
 

So, we have converted our region into a mesh grid of 14 X 14 points. 
Suppose the boundary condition is: 

At x=0, V = 20 (for any value of y) 

At x=1, V = 20 (for any value of y) 

At y=0, V = 0 (for any value of x) 

At y=1, V = 100 (for any value of x) 
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Using the boundary condition we can write, 
V0,0, V0,1, V0,2, V0,3, ………., V0,12, V0,13 = 20 
 
V13,0, V13,1, V13,2, V13,3, ………., V13,12, V13,13 = 20 
 
V0,0, V1,0, V2,0, V3,0, ………., V12,0, V13,0 = 0 
 
V0,13, V1,13, V2,13, V3,13, ………., V13,13, V13,13 = 100 
 
*We can assign either 20 or 100 to V13,13 

 
Now we will assign a guess value Vguess to all other mesh points. 

Let’s say Vguess = 50 

Alternatively, we can also assign the guess value to all the mesh points first and 

then impose the boundary conditions to the border points. 

Now we will set Vsteady =0. Our aim is to update the value of Vsteady. 

Initially Vsteady is zero. 

Hence {Vsteady~ Vguess} >> ∆𝑉 

We will now update Vi,j at each mesh point using equation (3) and these values 

will be assigned to Vsteady. 

Now if we see {Vsteady~ Vguess} ≤ ∆𝑉 then we will exit the loop; else we will set 

Vguess = Vsteady and go to next iteration. 

Now let’s choose our favourite language and develop the source code. 

 

 

 

 

 

 

 

 



Python Code 

# Simple Numerical Laplace Equation Solution using Finite Difference Method 
import numpy as np 
import matplotlib.pyplot as plt 
 
# Set Dimension and delta 
lenX = lenY = 14  
delta = 1 
 
# Boundary condition 
Vtop = 100 
Vbottom = 0 
Vleft = 20 
Vright = 20 
 
# Initial guess of interior grid 
Vguess = 50 
 
# Set colour interpolation and colour map 
colorinterpolation = 20 
colourMap = plt.cm.coolwarm 
 
# Set meshgrid 
X, Y = np.meshgrid(np.arange(0, lenX), np.arange(0, lenY)) 
 
# Set array size and set the interior value with Tguess 
V = np.empty((lenX, lenY)) 
V1 = np.empty((lenX, lenY)) 
V.fill(Vguess) 
 
# Set Boundary condition 
V[(lenY-1):, :] = Vtop 
V[:1, :] = Vbottom 
V[:, (lenX-1):] = Vright 
V[:, :1] = Vleft 
 
 
#Set Tsteady as zero to find out the convergence 
Vsteady=0 
 
#set initial no of iteration as zero 
n=0 
 
while True: 
     acc=abs(Vsteady-Vguess) 
     if(acc<=0.000001): 
          break 
     Vguess=Vsteady 
     n=n+1 
     for i in range(1, lenX-1, delta): 
          for j in range(1, lenY-1, delta): 



               V[i, j] = 0.25 * (V[i+1][j] + V[i-1][j] + V[i][j+1] + V[i][j-1]) 
               Vsteady=V[i,j] 
 
print('Potential Mesh') 
for i in range(0,lenX): 
    V1[i,:]=V[(lenY-1)-i,:] 
     
np.savetxt('suman-laplace.txt',V1,fmt='%.2f') 
print(np.around(V1, decimals=0)) 
 
print('Total no of Iteration : ',n) 
 
# Configure the contour 
plt.title("Contour of Potential") 
plt.contourf(X, Y, V, colorinterpolation, cmap=colourMap) 
 
# Set Colorbar 
plt.colorbar() 
plt.show() 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Output 
 
Potential Mesh 
[[ 20. 100. 100. 100. 100. 100. 100. 100. 100. 100. 100. 100. 100.  20.] 
 [ 20.  59.  74.  81.  85.  86.  87.  87.  86.  85.  81.  74.  59.  20.] 
 [ 20.  43.  57.  66.  71.  73.  75.  75.  73.  71.  66.  57.  43.  20.] 
 [ 20.  35.  46.  54.  59.  62.  64.  64.  62.  59.  54.  46.  35.  20.] 
 [ 20.  30.  39.  45.  50.  53.  54.  54.  53.  50.  45.  39.  30.  20.] 
 [ 20.  27.  33.  38.  42.  44.  45.  45.  44.  42.  38.  33.  27.  20.] 
 [ 20.  25.  29.  33.  35.  37.  38.  38.  37.  35.  33.  29.  25.  20.] 
 [ 20.  23.  26.  28.  30.  31.  32.  32.  31.  30.  28.  26.  23.  20.] 
 [ 20.  21.  23.  24.  25.  26.  26.  26.  26.  25.  24.  23.  21.  20.] 
 [ 20.  20.  20.  20.  20.  21.  21.  21.  21.  20.  20.  20.  20.  20.] 
 [ 20.  18.  17.  16.  16.  16.  16.  16.  16.  16.  16.  17.  18.  20.] 
 [ 20.  15.  13.  11.  11.  11.  10.  10.  11.  11.  11.  13.  15.  20.] 
 [ 20.  11.   7.   6.   6.   5.   5.   5.   5.   6.   6.   7.  11.  20.] 
 [ 20.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.   0.  20.]] 
Total no of Iteration :  182 
 

 


